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Schematic Duality Diagram

Note: These do not necessarily give rise to topological lifts!
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A couple of cylinders

The π-cylinder, Path cylinder Pn
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2-lifts

a

b

c � 1 1’

2 2’

= a

b

c

A

B

C

a b c( )0 1 1 a
1 0 1 b
1 1 0 c

�

1 2( )
1 0 1
0 1 2

=

a A b B c C


0 0 1 0 1 0 a
0 0 0 1 0 1 A
1 0 0 0 1 0 b
0 1 0 0 0 1 B
1 0 1 0 0 0 c
0 1 0 1 0 0 C
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2-lifts

a

b

c
π

id

id

� 1 1’

2 2’

= a

b

c

A

B

C

a b c( )0 π 1 a
π 0 1 b
1 1 0 c

�

1 2( )
1 0 1
0 1 2

=

a A b B c C


0 0 0 1 1 0 a
0 0 1 0 0 1 A
0 1 0 0 1 0 b
1 0 0 0 0 1 B
1 0 1 0 0 0 c
0 1 0 1 0 0 C
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2-lifts
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Some examples

A directed cylindrical construction Show(C12)
Cartesian product as a cylindrical construction Show(C3�P2)
The Petersen graph Show
Subdivision and powers Show
The exponential graph [K2�K2 ,K3 ] Show
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2-lifts
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Random 2-lifts

Main question
To what extent random 2-lifts preserve connectedness?

Fact
The spectrum of a 2-lift of a graph G contains the spectrum of
G as well as some new eigenvalues.

Conjecture [Y. Bilu and N. Linial 2004+]
Every d-regular graph has a 2-lift whose new eigenvalues have
absolute value less than or equal to 2

√
d− 1.

Note: If this is true we get Ramanujan graphs starting from
complete graphs!
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Random 2-lifts

A. W. Marcus, D. A. Spielman, N. Srivastava, 2013+
Published in Annals of Mathematics (2015)
There exist (arbitrarily large enough) bipartite regular
Ramanujan graphs of arbitrary degree.

The proof is based on the fundamental technique of interlacing
families of polynomials which is also used by the same authors
to prove Kadison-Singer Problem.
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Lifts and Randomness: MSS sketch of proof

Let G̃ be a typical random 2-lift of a d-regular Ramanujan
graph G.

χ(G̃) = χ(G)λ(G̃).

Prove that {λ(G̃)} is an interlacing family of polynomials.
The mean of {λ(G̃)} is the matching polynomial.
Then there exists a lift for which

Maxroot λ(G̃) ≤Maxroot matchingpoly ≤ 2
√
d− 1.

Use bipartiteness to impose symmetry on the spectrum!
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Interlacing families of polynomials

Sum

r(x) + s(x) l(x) + t(x)p(x) + q(x)

t(x)l(x)s(x)r(x)

q(x)p(x)

If siblings are interlacing then there exists a leaf as L such that

Maxroot(L) ≤Maxroot(Sum).
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Main question

It seems that 2-lifts preserve connectedness.
But 2-lifts also preserve the degree.

Question
Is it possible to use random lifts to construct sparsifiers that
reduce the degree but also preserve connectedness?

If the answer is YES then one may start from the complete
graph Kn as the most connected graph and sparsify to sparser
graphs of smaller degrees!
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π-lifts

1

2

3

4

5

a

b

c

d

e



0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0
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A random π-lifts

(a) (b)
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Regular random π-lifts: construction

(*,id)

(*
,id

) (id,*)(*,p) (p
,*
)

(p,*)

(p,*)

(id,*)

Consider a (d = 2k)-regular graph
For each vertex v, choose half of the edges at random and
assign the label π to them. Assign the label id to the rest
of the edges attached to v.
Construct the corresponding π-lift from the labeled-graph
which is a (k + 1)-regular graph.

17 / 60



Tree-
cylinders

A. Daneshgar

Outline

Cylinders

Sparsification
Regular
random
π-lifts
Tree-cylinders
T-graphs
Reed’s
Conjecture

Concluding
remarks

Iterated Random π-lifts: an important ensemble

(*,id)
(*
,id

) (id,*)(*,p) (p
,*
)

(p,*)

(p,*)

(id,*)

Start: The complete graph K2t+3.
Sample: Iteratively, apply random π-lifts for t stages.
Outcome: Is a 3-regular element of the ensemble.
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Main idea

Roadmap:

Find a cylinder that
sparsifies, preserves connectivity and reduces the degree at the

same time.

Then sparsify the complete graph using this cylindrical
construction!
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Tree-cylinders: how they help?
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Tree-cylinders: how they help?

(id
,id
)

(id,(1,2))

((
1,
3)
,(1
,3
))

13

1

1

3
2
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Tree-cylinders (the Coxeter graph)
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Some tree-lifts of complete graphs
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Random tree-lifts: a challenge for small degrees

[I. Dumitriu and S. Pal 2012]
The empirical distribution of the eigenvalues of adjacency
matrices of sparse regular random graphs converges to the
semicircle law, when the degree slowly increases to infinity with
the number of vertices.

Note: The ensemble is the whole class of labeled d-regular
graphs with uniform distribution.

Challenge!
Can we sample in a better and more efficient way?
Candidate: The ensemble of random tree-lifts!

24 / 60
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Random tree-lifts: main questions

Study the basic combinatorial features of the ensemble
(e.g. girth, independence number, Hamiltonicity, chromatic
number,...)
Study connectedness in the mean (is there an
improvement?)
Study the spectral gap as well as the hard edge.
Study these properties in the limit and note that the order
grows exponentially.
Study this ensemble as an ensemble of random
{0, 1}-matrices.
Try to construct extremal species.
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T-graphs

History
Tree cylinders of M. Madani + Group labeling of A. Taherkhani
⇒ T-graphs!

Definition
A T-graph is a tree-lift that can be described as replacing each
vertex of a complete graph by a complete tree and join the
leaves in a special predefined order called group labeling of trees.

26 / 60
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Examples of T-graphs (the Coxeter graph)
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Bilateral Symmetry and
Commutative Decompositions

The π-cylinder, Path cylinder Pn

Bsymmetric Cylinders (informal!)
A cylinder is bsymmetric if it has a symmetry with respect to its
ends (i.e. bases).
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Bilateral Symmetry and
Commutative Decompositions

Commutative decompositions
For t ≥ 1, a commutative t-decomposition of a graph G is a
family of t edge-disjoint spanning subgraphs of G, as
(G0 , · · · ,Gt−1) each of which has no isolated vertex such that
for every pair of disjoint indices i and j, the matrices Gi and

Gj commute, and moreover, G =

t−1∑
i=0

Gi .

29 / 60
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Bilateral Symmetry, Commutative Decompositions
and Spectrum

Let H be a symmetric cylinder with no internal vertices (e.g. a
tree-cylinder), then

A spectral result

χ(G�H, x) =

n∏
j=1

χ

(
T +

t−1∑
i=0

θ
j

iE
bb′

i
, x

)
,

in which, T is the base of the cylinder, χ is the characteristic
polynomial and sum is a term depending on the commutative
decomposition.

Summary!
The spectrum of such a construction is a perturbation of the
spectrum of the base depending on the construction and the
twists.30 / 60
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Magic labeling

0 1

00 01 10 11

000 001 010 011 100 101 110 111

〈a〉
〈a

2
〉 a〈a

2
〉

〈a
4
〉 a

2
〈a

4
〉 a〈a

4
〉 a

3
〈a

4
〉

H a4H a2H a6H aH a5H a3H a7H

An example of cyclic group labeling of a binary tree T3 by
Γ = 〈a | a16 = 1〉.
H

def
= 〈a8〉.

if s = sm · · · s0 is a binary string of length m+ 1, then its
reverse is defined as ŝ def

= s0 · · · sm and its corresponding
integer is defined as (s)2

def
= sm2m + · · ·+ s12 + s0 .31 / 60
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Magic labeling

0 1

00 01 10 11

000 001 010 011 100 101 110 111

〈a〉
〈a

2
〉 a〈a

2
〉

〈a
4
〉 a

2
〈a

4
〉 a〈a

4
〉 a

3
〈a

4
〉

H a4H a2H a6H aH a5H a3H a7H

Let Γ = 〈a | aN = 1〉 be a multiplicative cyclic group of
order N generated by a, and let C(Γ) be the whole class of
cosets of subgroups of Γ. Then, the mapping
γ : V (T

h
)→ C(Γ) defined as

γ(s)
def
= a(ŝ)2 〈a2

|s|
〉

is called a cyclic group labeling of T
h
by Γ.32 / 60
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A class of highly symmetric graphs

Let t = 3× 2
h−1

such that n = 2t+ 1 is a prime number.
Consider the multiplicative group Γ = Z∗

n
of the field Zn

and let a and b be its generators for which b3 = 1 and
a2t/3 = 1.
Label the root of T

•

3,h
by Γ itself and label each of its

siblings as s with |s| = 1 by the cosets bs〈a〉. Also, let γ
be the cyclic group labeling of a complete binary tree of
height h− 1 under the vertex 0 by the cyclic group 〈a〉 and
for the subtrees below the vertices 1 and 2 apply
translation (i.e. multiplying the cosets) by b and b2,
respectively, of the labeling γ of the subtree under 0.
Again, for the leaf i, let γ(i)∗ be the element of the coset
γ(i) = {γ(i)∗,−γ(i)∗} which is greater than or equal to 1

and less than or equal to t, and define ki

def
= γ(i)∗.

33 / 60
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Tree-cylinders (the Coxeter graph)

Here: h = 1, t = 3, b3 = 1, a2 = 1.34 / 60
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Eigenvalue Mixing

do the same!

x− (r(x)−1 + s(x)−1) x− (l(x)−1 + t(x)−1)x− (p(x)−1 + q(x)−1)

t(x)l(x)s(x)r(x)

q(x)p(x)

This is essentially how the determinant of a perturbation of a
tree can be computed in most important cases!

35 / 60
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A 3-regular Ramanujan graph of order 130

Setup
Take the 3-regular tree of hight 2 with 6 leaves as the base of
the tree-cylinders and choose the complete graph on 13 vertices
as the base-graph of the construction.

Using group-labeling this gives rise to a 3-regular Ramanujan
graph of order 130 with the following characteristic polynomial,

φ(K13 �H
•
, x) = (x− 3)(x− 1)(x+ 2)(x− 2)

3

(x
2

− 2x− 2)
2

×(x
10

+x
9

−14x
8

−12x
7

+65x
6

+45x
5

−115x
4

−55x
3

+69x
2

+12x−10)
12

.

Roots:
[−2.635(12),−2.197(12),−2.000,−1.603(12),−1.135(12),
−0.732(2),−0.485(12), 0.396(12), 0.670(12), 1, 1.424(12),
2(3), 2.08(12), 2.485(12), 2.732(2), 3.000]36 / 60
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0

1

2

34

5
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8

9
10

11

12
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Chromatic number under sparsity I

A conjecture [B. Reed 1998]

χ(G) ≤ d1
2(∆ + ω + 1)e.

Main question
How does χ behave under structural sparsity conditions?

Reed’s conjecture for triangle-free graphs

χ(G) ≤ ∆
2 + 2.

38 / 60
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Chromatic number under sparsity II

Some facts
Conjecture is true for ∆ ≤ 4 (Consequence of Brooks’
theorem).
[A. V. Kostochka (1978)]: If G has large girth and
∆(G) ≥ 5 then χ(G) ≤ ∆

2 + 2.
A. Johansson (1996): For triangle-free graphs with large ∆
we have χ(G) ≤ O( ∆

log ∆).

Kostochka and Reed parameters
Let G′(d, g) be the class of all graphs of maximum degree d and
of girth larger than g. Define,

R(d)
def
= supg>3 supG∈G′(d,g) χ(G),

K(d)
def
= infg>3 supG∈G′(d,g) χ(G).

39 / 60
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Chromatic number under sparsity III

Kostochka-Reed Conjecture

For any triangle-free graph we have χ(G) ≤ ∆
2 + 2; i.e.,

∀ d ≥ 2 R(d) ≤ ∆
2 + 2.

The first open questions!
Although the conjecture is correct asymptotically and also when
∆ ≤ 4, it is still open for small values of ∆. The first open
cases are:
A: Does there exists a 5-chromatic triangle-free graph with

∆ ≤ 5?
B: Does there exists a 6-chromatic triangle-free graph with

∆ ≤ 6?
B seems to be the easiest open case!

40 / 60
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Chromatic number under sparsity III

Idea
What if we impose more constraints on the coloring problem
itself?

Let’s talk about this!

41 / 60



Tree-
cylinders

A. Daneshgar

Outline

Cylinders

Sparsification
Regular
random
π-lifts
Tree-cylinders
T-graphs
Reed’s
Conjecture

Concluding
remarks

Graph colouring

Homomorphisms to Kn is equivalent to colouring the
vertices of the graph by n colours such that the terminal
ends of each edge have different colours.

42 / 60
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Another question!

Does there exist a homomorphism from the Petersen graph
to the 5-cycle C5?

43 / 60
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Another question!

Does there exist a homomorphism from the Petersen graph
to the 5-cycle C5?
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Circular chromatic number

The circular complete graph, Kn
r
, has the vertex set

{0, 1, · · · , n− 1}

and the edge set

{ij | r ≤ |i− j| ≤ n− r}.

The circular chromatic number of a graph G is defined as

χc(G)
def
= inf{n

r
| G −→ Kn

r
}.

Example: K 5
2

= C5.

44 / 60
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Girth-closed classes

Girth-closed and odd girth-closed classes
A class of simple graphs G is said to be girth-closed (resp.
odd-girth-closed) if for any positive integer g there exists a
graph G ∈ G such that the girth (resp. odd-girth) of G is
greater than or equal to g.

Pentagonal and odd-pentagonal classes
A girth-closed (resp. odd-girth-closed) class of graphs G is said
to be pentagonal (resp. odd-pentagonal) if there exists a
positive integer g∗ depending on G such that any graph G ∈ G
whose girth (resp. odd-girth) is greater than g∗ admits a
homomorphism to the five cycle (i.e. is C5-colorable).

45 / 60
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The pentagon problem

Nešetřil parameter
Let G(d, g) be the class of all d-regular graphs of girth larger
than g. Define,

Nes(d)
def
= inf

g>3
sup

G∈G(d,g)
χc(G).

Pentagon problem [J. Nešetřil (1999)]

Is the class of simple 3-regular graphs pentagonal? i.e.,
Is it true that Nes(3) ≤ 2.5?

46 / 60
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Some negative results

[A. V. Kostochka, J. Nešetřil, P. Smolikova (2001)]
If C5 is replaced by C11 , then a similar conjecture does not
hold.
[I. M. Wanless and N. C. Wormald (2001)]
If C5 is replaced by C9 , then a similar conjecture does not
hold.
[H. Hatami (2005)]
If C5 is replaced by C7 then a similar conjecture does not
hold.
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Some positive results

[Brooks’ theorem] If C5 is replaced by C3 , then a similar
conjecture does hold.
[A. Galluccioa et.al. (2001)] For every fixed simple graph
H the class of H-minor free graphs is pentagonal.
[O. V. Borodin et.al. (2004)] The class of planar graphs,
projective planar graphs, graphs that can be embedded on
the torus or Klein bottle are pentagonal.
[O. V. Borodin et.al. (2008)] The class of simple graphs as
G for which every subgraph of G has average degree less
than 12/5, is pentagonal (actually with g∗ = 3).

48 / 60



Tree-
cylinders

A. Daneshgar

Outline

Cylinders

Sparsification
Regular
random
π-lifts
Tree-cylinders
T-graphs
Reed’s
Conjecture

Concluding
remarks

The odd-girth constraint

Negative results
[M. Gebleh (2007)]
There exists an odd-girth-closed subclass of simple
3-regular graphs (i.e. spiderweb graphs) which is not
odd-pentagonal. (Actually, the circular chromatic number
of any spiderweb graph is equal to 3.)

Positive results
[D., M. Madani (2015)]
Let C be the subclass of the class of generalized Petersen
graphs for which one of the following conditions hold.

(a) Pet(n, k), where k is even, n is odd and n
k−1≡ ±2.

(b) Pet(n, k), where both n and k are odd and n ≥ 5k.

Then C is odd-pentagonal.
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Chromatic number under sparsity III

Let’s try to show that,

Objective
A lower bound for K(d) implies a lower bound for Nes(d).
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Powers and subdivitions

Definitions

The graph G
1
t (i.e. the t-subdivision of G) is obtained by

replacing each edge of G by a path of length t.
The kth power functor on graphs is the right adjoint to the
kth subdivision functor and for a graph G yields a graph
Gk on the same vertex set where u ∼ v if there exists a
walk of length k between u and v in G.

For any graph G, define G
k
t

def
= (G

1
t )k.

Note: If G −→ H then for any integer k > 1 we have
Gk −→ Hk.
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Examples and applications

Examples
C3

5 = K5.
Pet3 = K10.

For any integer t ≥ 1 we have (Kn)
6t+1
2t+1 = Ktn2−tn+n.

Applications
Petersen 6→ C5 .
Coxeter 6→ C7 .

An implication of Pentagon problem (if the answer is YES)
For any integer g there exists a 3-regular graph of girth larger
than g whose third power is 5-colorable.
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Using tree-cylinders one can prove:

[M. Madani (2015)]
Let

H be a graph with odd girth at least 2k + 3,
G be a d(d− 1)k-regular graph with girth g and odd girth
og, where G 6→ H

2k+1
,

then there exist (many non-isomorphic) d-regular graphs G′

such that
girth(G′) ≥ g,
oddgirth(G′) ≥ og,
and G′ 6→ H.
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A connection to Reed’s conjecture

A useful corollary
Let

(2k + 1)r − nk > 0,
G be a d(d− 1)k-regular graph with girth g and odd girth
og, where χc(G) > n

(2k+1)r−nk ,

then there exist (many non-isomorphic) d-regular graphs G′ s.t.
girth(G′) ≥ g,
oddgirth(G′) ≥ og,
and χc(G

′) > n
r .
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Sketch of the proof

One should try to find a suitable labeling such that
G′ ' G�St

T
d,k

.
First show that there exists an ordinary homomorphism

[T
d,k
, H]St

−→ [P
2k+1

, H] ' H2k+1.

Note that
G′ ' G�St

T
d,k
−→ H

⇒ G −→ [T
d,k
, H]St

−→ H2k+1.

Apply a result of Hajiabolhassan and Taherkhani indicating
that for any non-bipartite graph G if 2K + 1 < og(K

n/r
)

we have
K2k+1

n/r
' K n

(2k+1)r−kn
.

-
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A consequence

Summary!

K(d(d− 1)k) > d n

(2k + 1)r − nk
e ⇒ Nes(d) >

n

r
.

Let d = 3, n = 5, r = 2 and k = 1. Then, using this result,

A failure!
Existence of 6-regular 6-chromatic graphs of large girth would
have disproved the pentagon problem!

But this is impossible since K(6) ≤ 5!!!!
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A second attempt

Let d = 3, n = 7, r = 3 and k = 2. Then, using this result,

A problem

8 ≤ K(12) implies 7
3 < Nes(3).

This provides a constructive proof of H. Hatami’s result!
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Epilogue: some open problems

Study the random π-lift model and prove that there exists
π-lifts which are at least as connected as the base graph.
Try to define a good and computable model for random
tree-lifts.
Study the extremal properties of T-graphs and their
spectra.
Construct a class of arbitrarily sparse 24-regular graphs of
chromatic number larger than 9.
Construct a class of arbitrarily sparse 12-regular graphs of
chromatic number 8.
Construct a triangle-free 6-regular graph of chromatic
number 6.
Construct a triangle-free 5-regular graph of chromatic
number 5.
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Epilogue: A quotation! (translation by Alain Connes)

In the prelude of “Récoltes et Semailles", Alexandre
Grothendieck makes the following points on the search for
relevant geometric models for physics and on Riemann’s lecture
on the foundations of geometry.
It must be already fifteen or twenty years ago that, leafing
through the modest volume constituting the complete works of
Riemann, I was struck by a remark of his “in passing".

... it could well be that the ultimate structure of space is
discrete, while the continuous representations that we make of
it constitute perhaps a simplification (perhaps excessive, in the
long run ...) of a more complex reality; That for the human
mind, “the continuous" was easier to grasp than the
“discontinuous", and that it serves us, therefore, as an
“approximation" to apprehend the discontinuous.
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Thank you!
Comments are Welcome

daneshgar@sharif.ir
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